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o Requires the solution of an inverse problem with many optimization parameters(~104) – Time consuming and expensive. 
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o Although NLP has rich diagnostic value, solution of an inverse problem is even more difficult due to high strain involved.
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What is Learning?
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Convolution Layer Pooling Layer

Activation Layer

• Goal of activation layer is to introduce some non-
linearity to the activation map.

• Commonly used activation functions : ReLU, Leaky 
ReLU and Sigmoid.

Goal 
• Reduce the dimensionality – computational gain 

and less chance of overfit.
• Introduce some translational invariance.
Types of pooling
• Max pooling
• Average pooling

32x32x3 image
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Problem Setup

We model the tissue as an incompressible isotropic hyper-elastic solid with strain energy density function  
given by: 

𝑊 =
𝜇

2𝛾
𝑒𝛾 𝐽

−2
3 𝐼1−3 − 1

• μ represents the slope of the stress-strain curve at zero 
strain.

• γ represents the nonlinear elastic response of the material

Malignant tumors are characterized by more heterogenous
distribution of shear modulus than their benign counterparts.

Heterogeneity study

S. Goenezen et al. [2011]

L. Tiangxiao [2015]



Problem setup

Benign

Malignant

Heterogeneity study

• For both cases, the SM is represented as a
superposition of Gaussian distribution. For
malignant tumors, the centers of the
Gaussians are separated by certain distance
to ensure two foci.

• 10,000 distinct shear modulus distributions
were generated (5000 each) by changing the
shape of the tumor, location of the tumor
and the value of the shear modulus.



Problem setup

Benign

Malignant

Generating in-silico displacement field [Heterogeneity study]

• Resulting displacement field was obtained
by compressing the tissue virtually in Finite
Element Solver at low strain for each SM
distribution to generate the data-set of
10,000 distinct displacement fields, which
acts as an input to the CNN.

• In reality, the measured displacement field
is often corrupted with the noise. To
simulate this different level of Gaussian
noise was added to the resulting
displacement field.



Problem set-up
CNN Architecture :
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Results [heterogeneity study]

Confusion matrix
(N=2000) [1% noise]

Actual

Benign Malignant

Predicted
Benign 1000 2

Malignant 0 998

Noise level 
(in %)

Accuracy Specificity (TN/N) Sensitivity (TP/P)

0 99.95% 100% 99.9%

1 99.9% 100% 99.8%

3 99.95% 100% 99.9%

10 99.75% 99.7% 99.8%



Connection to traditional Elastography
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Problem Setup

We model the tissue as an incompressible isotropic hyper-elastic solid with strain energy density function  
given by: 

𝑊 =
𝜇
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• μ represents the slope of the stress-strain curve at zero 
strain.

• γ represents the nonlinear elastic response of the material

It is observed that the malignant tumors tend to stiffen at faster
rate than their benign counterparts – have higher average value of
nonlinear parameter(γ).

Nonlinearity study



Problem setup
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Non-linearity study

• For this study, the shape of the tumor for both
the cases is equal but the value of non-linear
parameter is changed.

• For benign case, the value of NLP is in the
range of 5-15, whereas for the malignant case
it is in the range of 20-40. This makes the latter
elastically more non-linear.

• 5000 different NLP distributions were
generated (2500 of each class) by changing the
value of NLP.



Problem setup
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Generating difference of displacement images [Nonlinearity study]

• For each tumor the tissue is first compressed at
1% strain and then at 20% strain to obtain
displacement field at two different strain level.

• These two displacement fields are then
normalized and subtracted to obtain “difference
of normalized displacement images”, which acts
as an input to our CNN.

• Again, the effect of noise in the displacement field
on the performance of net was tested by adding
different level of Gaussian noise.



Results [nonlinearity study]

Confusion matrix
(N=1000) [1% noise]

Actual

Benign Malignant

Predicted
Benign 498 1

Malignant 2 499

Noise level 
(in %)

Accuracy Specificity (TN/N) Sensitivity (TP/P)

0 99.8% 100% 99.6%

1 99.7% 99.6% 99.8%

3 99.8% 99.8% 99.8%

10 99.9% 99.8% 100%



Testing on real patient data

Train the CNN entirely 
using synthetic data

Learn the parameters of the model

Doing prediction on a real data
using learned weights

Diagnosis : 
Benign/Malignant



Testing on real patient data

Confusion matrix
(N=10)

Actual

Benign Malignant

Predicted
Benign 4 1

Malignant 1 4

• Preprocessed the patient data to make it consistent
with the input of the CNN.

• Used the learned weights from 3% noise model of
nonlinearity study to do the prediction on 10 patients.

• Physics based transfer learning approach, where we
introduced the physics through synthetic training data
seems to be giving promising results.



Conclusion

• Bypassed the solution of an expensive and ill-posed inverse problem.

• Demonstrated the robustness of this data driven model to highly noisy measurements.

• Explored the connection between this learning based approach and traditional
Elastography by analyzing the convolution.

• Physics based transfer learning.

• Possibility of getting even better accuracy by using hybrid dataset.
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Mechanics of cancer

Cartoon of tumorigenesis [Liu et al. 2015]

• Increased 
collagen

• Less tortuous
• Heterogeneous

Force (F)

Extension(ε)

Slide credit : Dr. Oberai



Inception(v3) model
Heterogeneity Study 

Noise Level (in %)
[Total images = 600 (300b,300m)]

Train Val Test

0 100% 98.4%[61] 96.4%[56]

1 99% 95.2%[63] 98.6%[72]

3 96% 91.8%[61] 95%[60]

10 88% 57.1%[63] 69.4%[62]

Nonlinearity Study 

Noise Level (in %)
[Total images = 300 (150b,150m)]

Train Val Test

0 100% 100%[31] 100%[31]

1 100% 100%[30] 95.7%[23]

3 100% 100%[31] 100%[29]

10 100% 100%[27] 100%[25]

No. of validation and testing images are shown in the bracket. 


