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Why care about Bayesian inversion? GAN as Prior in Bl

Classical (regularization) approach: Bayesian inference: Key idea: Use the distribution learned by GAN as a surrogate for
Goal: Recover image x* from measurement . * A principled approach to account for uncertainty in an inverse prior distribution and reformulate the inference problem in low-
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x* = argmin=||f(x) =9 |12 + Hx B xref” problem. o | | | dimensional latent space of GAN.
x 2 R * Gives probability distribution over inferred field given some
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the solution of an inverse problem, it is critical to account for ‘ /\ /\ fz“’pz
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Example 1: medical imaging Challenge | : Priors where,

~ o - Finding a quantitative description of informative and feasible post ~
225t = . (3 — F(9(2))) pal®

Typical priors..

PP (x) = exp (- llxll’ Steps:
0-2
1. Learn the prior distribution: train a GAN using samples from data

measurement inferred signal measurement inferred signal uncertainty However what if
) .

- . dat
Un-safe Safe [Adler et al., 2018] o the prior knowledge is more complex and difficult to distribution px“*(x).
_ characterize analytically.
o not enough domain knowledge is available to construct 2. Characterize the posterior distribution: for a given measurement
Example 2: self-driving cars informative priors. y, evaluate any statistic of mteresthgEzlzost[m(x)].
| I ] Challenge Il : Sampling . MCMC 1 post
S =) - { ) &)f L * Inferred signal is high dimensional (103-107). E/IC:VIC Samp"”% PZ (z]y) = (z|y).
A0y ;/ v e Difficult to sample from high dimensional posterior space using valuate any point estlrlcate s(x) as,

] sampling-based methods like MCMC. 1 R

measurement inferred signal measurement inferred signal uncertainty e An efficient sampler is difficult to design in high-dimension. S(x) ~ N 2 S(g(Z)) ) 7z ~ pg/ICMC (Zly)
Un-safe Safe We use Hamiltonian Monte Carlo (HMC) with burn-in period of 0.5

,_,
o
o

log(avg. recovered
variance (per pixel))

Mean of the - —
reconstructed signal k“» "“\
(Xmean) — -
Model uncertainty —
output (X,4s) y

Active learning / Design of Experiments:
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Inpainting: Physics-driven inference: Key takeaways:
e (ronose)  (noise) M Mean  variance  MAP(L)  MAP(W) oo O v A novel method for performing Bayesian inference
True involving complex priors and high-dimensional posterior.
T nn.nun. v" Novel unsupervised probabilistic field inference algorithm.
Measurement v' Demonstration of the utility of uncertainty quantification

to facilitate active learning.
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