Bayesian Inference with GAN Priors

Dhruv Patel and Assad A Oberai

{dhruvvpa, aoberai}@usc.edu

Why care about Bayesian inversion?	Motivation	GAN as Prior in BI			
Classical (regularization) approach:Goal: Recover image x* from measurement y. $x^* = \arg \min \frac{1}{2} \ f(x) - \widehat{y}\ _W^2 + \ x - x_{ref}\ _R^2$	 Bayesian inference: A principled approach to account for uncertainty in an inverse problem. Gives probability distribution over inferred field given some 	<u>Key idea</u> : Use the distribution learned by GAN as a surrogate for prior distribution and reformulate the inference problem in low- dimensional latent space of GAN.			
	measurement. <i>Posterior distribution</i> $n_{post}^{post}(\mathbf{r} \hat{\mathbf{y}}) = \frac{1}{2}n_{post}^{like}(\hat{\mathbf{y}} \mathbf{r}) n_{post}^{prior}(\mathbf{r})$	$\mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}^{post}}[m(\boldsymbol{x})] = \frac{1}{\mathbb{Z}} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}^{prior}}[m(\boldsymbol{x})p_{\eta}(\boldsymbol{\hat{y}} - \boldsymbol{f}(\boldsymbol{x}))]$			

- y X
- > Applications where high-stake decisions are made based on the solution of an inverse problem, it is critical to account for uncertainty in the inferred solution.

Example 1: *medical imaging*

inferred signal measurement <u>Un-safe</u>

Example 2: self-driving cars

Challenge I : Priors

Finding a quantitative description of informative and feasible priors.

Typical priors..

$$p^{prior}(\boldsymbol{x}) = exp\left(-\frac{1}{\sigma^2}\|\boldsymbol{x}\|^2\right)$$

However, what if..

- the prior knowledge is more complex and difficult to characterize analytically.
- not enough domain knowledge is available to construct informative priors.

Challenge II : Sampling

• Inferred signal is high dimensional (10³-10⁷). • Difficult to sample from high dimensional posterior space using sampling-based methods like MCMC.

• An efficient sampler is difficult to design in high-dimension.

 $= \frac{1}{Z} \mathop{\mathbb{E}}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}^{data}} [m(\boldsymbol{x}) p_{\eta}(\widehat{\boldsymbol{y}} - \boldsymbol{f}(\boldsymbol{x}))]$ $= \frac{1}{\mathbb{Z}} \mathop{\mathbb{E}}_{z \sim p_z} [m(g(z))p_{\eta}(\widehat{y} - f(g(z)))]$ $= \frac{1}{z} \mathop{\mathbb{E}}_{z \sim p_z^{post}} [m(g(z))]$

where,

$$p_{z}^{post} = p_{\eta} \left(\widehat{y} - f(g(z)) \right) p_{z}(z)$$

Steps:

- 1. Learn the prior distribution: train a GAN using samples from data distribution $p_X^{data}(x)$.
- 2. Characterize the posterior distribution: for a given measurement \hat{y} , evaluate any statistic of interest $\mathbb{E}_{x \sim p_x^{post}}[m(x)]$.

 $p_Z^{MCMC}(\mathbf{z}|\widehat{\mathbf{y}}) \approx p_Z^{post}(\mathbf{z}|\widehat{\mathbf{y}}).$ MCMC Sampling: Evaluate any point estimate s(x) as,

$$s(\boldsymbol{x}) \approx \frac{1}{N} \sum_{n=1}^{N} s(\boldsymbol{g}(\boldsymbol{z})), \qquad \boldsymbol{z} \sim p_{Z}^{MCMC}(\boldsymbol{z}|\boldsymbol{\hat{y}})$$

We use Hamiltonian Monte Carlo (HMC) with burn-in period of 0.5

Results

Denoising:

Active learning / Design of Experiments:

Inpainting:

True	2	3	4	6	8	9
Measurement						
MAP	2	3	4	6	8	9
Mean	2	3	4	6	8	9
Variance	2	3	4	Ø	Ø	đ

Physics-driven inference:

True	Measurement (no noise)	Measurement (noise)	МАР	Mean	Variance	MAP (L ₂)	MAP (H ¹)	Mean (true)	Varian (true)
					Q		-		C
3	5		3	3	3	5			
4	4	新	4	4	4	44			

(L₂)

error

0.025

0.020

Key takeaways:

 \checkmark A novel method for performing Bayesian inference involving complex priors and high-dimensional posterior. ✓ Novel unsupervised probabilistic field inference algorithm. \checkmark Demonstration of the utility of uncertainty quantification to facilitate active learning.

Paper:

D. Patel, A. Oberai, "GAN priors for Bayesian inference", Deep inverse workshop (NeurIPS 2019): https://openreview.net/pdf?id=HJIL2Q2qLS