
Classical (regularization) approach:
Goal: Recover image x* from measurement y.
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➢ Applications where high-stake decisions are made based on
the solution of an inverse problem, it is critical to account for
uncertainty in the inferred solution.

Example 1: medical imaging

Example 2: self-driving cars
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Why care about Bayesian inversion? Motivation GAN as Prior in BI

Key idea: Use the distribution learned by GAN as a surrogate for 

prior        distribution and reformulate the inference problem in low-
dimensional    latent space of GAN.
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Steps:
1. Learn the prior distribution: train a GAN using samples from data 

distribution 𝑝𝑋
𝑑𝑎𝑡𝑎(𝒙).

2. Characterize the posterior distribution: for a given measurement 
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We use Hamiltonian Monte Carlo (HMC) with burn-in period  of 0.5

Bayesian inference:
• A principled approach to account for uncertainty in an inverse 

problem.
• Gives probability distribution over inferred field given some 

measurement.
Posterior distribution
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Challenge I : Priors
Finding a quantitative description of informative and feasible
priors.
Typical priors..
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However, what if..
o the prior knowledge is more complex and difficult to 

characterize analytically.
o not enough domain knowledge is available to construct 

informative priors.

Challenge II : Sampling
• Inferred signal is high dimensional (103-107).
• Difficult to sample from high dimensional posterior space using
sampling-based methods like MCMC.
• An efficient sampler is difficult to design in high-dimension.
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[Adler et al., 2018]

Active learning / Design of Experiments:
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Physics-driven inference: Key takeaways:

✓ A novel method for performing Bayesian inference
involving complex priors and high-dimensional posterior.

✓ Novel unsupervised probabilistic field inference algorithm.
✓ Demonstration of the utility of uncertainty quantification 

to facilitate active learning.

Paper:
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