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Abstract

Contrast-Enhanced CT (CECT) imaging is used in the diagnosis of renal cancer
and planning of surgery. A sequence of CECT phase images which captures the
movement of contrast agent inside an organ often completely misses some of the
phase images or has corrupted phase images making the entire sequence useless.
We propose a probabilistic deep generative model for imputing such missing phase
images in CECT imaging. Our proposed model recovers the missing phase images
with quantified uncertainty estimates enabling medical decision-makers make
better-informed decisions. Furthermore, we propose a novel style-based adversarial
loss to learn very fine-scale features unique to CECT imaging resulting in better
recovery. We demonstrate the efficacy of this algorithm using a patient dataset
collected in an IRB-approved retrospective study.

1 Introduction

Medical image data acquired from ultrasound, X-rays (CT), MR, and other modalities are used
routinely in detecting, diagnosing, and planning treatment for myriad diseases. The problem of
missing data is ubiquitous in medical imaging. Missing image data can be in the form of missing
images in a sequence of images, or missing regions within a single image, or artifacts like blurring.
In all these cases, missing data leads to the loss in the utility of the images, and an accompanying
loss in the accuracy of detection, diagnosis, and treatment planning for a disease.

There are many reasons for missing or lost data. In some cases, patients may be initially scanned
under one protocol, while the final management of disease might require additional, or more thorough,
scans. However, this may not be feasible due to the patient’s inability to tolerate additional scans,
logistical issues, and restrictions imposed by the insurance provider. In addition to this, in [1], the
authors refer to missing image data as the “leaky” radiological pipeline. They point to several causes
for missing image data that include incompatibility between different vendors of medical imaging
equipment, a saturation of the bandwidth of a device, and collateral damage during events like server
errors. In all these cases, a portion of image data is missing and because of this the portion that is
collected is rendered useless, or of little value.

While all imaging modalities have their strengths and limitations, Contrast-Enhanced CT (CECT)
imaging is remarkably effective in detection of renal cancers; CECT images are generated by
injecting an intravenous contrast agent into the subject and then imaging the organ during four
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distinct time points. The images corresponding to these different time points are called pre-contrast,
corticomedullary, nephrographic and excretory phase images. We note that the term “phase images"
in this article refers to these images obtained during different time instances capturing the dynamics
of contrast agent in an organ and not the images corresponding to the phase component of measured
signal/image as is typically used in traditional medical imaging.

Conventional diagnosis whether a tumor is benign or malignant is based on the qualitative visual
inspection of the four CECT phase images. Further, once a decision has been made to treat or resect
the renal mass, these images are used by the surgeon to plan the surgery. The loss of any one or more
CECT phase images due to any of the reasons discussed above negatively impacts the management
of renal masses. It leads to less accurate diagnosis of malignant masses [2] and adversely effects
surgical planning in cases where surgical intervention is necessary. In this manuscript we present a
statistical deep-learning based technique for imputing missing phase images in a sequence of renal
CECT image. This technique provides the best guess for the missing phase and also quantifies the
confidence in this guess. This additional information can allow the clinician to make an informed
decision about how much to trust the imputed data when delivering their final decision.

Related work and our contribution Image imputation refers to the task of recovering the miss-
ing/corrupted part of an image from the part that is available/not corrupted [3, 4]. It is an ill-posed
inverse problem and Bayesian inversion provides a principled approach of solving it with quantified
uncertainty estimates. However, when dealing with high-dimensional data involving complex prior
information, which is typically the case in medical imaging, it faces significant challenges. Recently
deep generative priors have shown considerable promise in learning complex probability distributions
and are successfully being used to solve stochastic inverse problems in physical science, computer
vision, and medical imaging applications [5, 6, 7, 8, 9]. Motivated by the success of these deep gener-
ative models in such diverse applications, in this work we use deep Genearative Adversarial Network
(GAN) as a prior in Bayesian update for Contrast-enhancecd CT (CECT) image imputation task.
Our main contributions are: (1) The development of a new stylized loss function for a Wasserstein
GAN (WGAN) that produces more realistic CECT images than the vanilla WGAN.(2) The use of
the WGAN as a prior in a Bayesian inference method to determine the most likely missing phase
image, given an incomplete sequence of images. (3) Quantification of uncertainty in each pixel of the
recovered image.

2 Problem formulation

Let x ∈ Rnx×ny×4 denote the true (nx × ny) CECT image with all four phases, and let y ∈
Rnx×ny×np denote the observed CECT image which contains np phases, where np = {1, 2, 3}. The
observation y is related to true data x by, y = Mx, where M is the boolean masking operator. The
goal of probabilistic image imputation is to infer the conditional probability distribution p(x|y). That
is given an observed CECT image, y, with missing phases, recover the probability distribution of
true underlying image containing all four phases x. Using Bayes’ rule we represent this conditional
density as ppost(x|y) = plike(y|x)pprior(x)/p(y), where pprior(x) is the prior density representing
prior belief about the inferred signal x, and plike(y|x) is the likelihood distribution.

In [9] an algorithm which uses a GAN to learn the prior distribution from multiple samples of
x was proposed. In this work we use these GAN priors to infer the missing CECT phase image.
Specifically, we first train a GAN using a sample set S containing 4-phased CECT images to learn
the prior distribution directly from data. Thereafter, we reformulate the inference problem in the
low-dimensional latent space of the GAN for efficient posterior sampling. Since the dimension of the
latent space is much smaller than that of image space, one can use sampling-based techniques such as
Markov Chain Monte Carlo (MCMC) to compute the statistic efficiently.

Style-based loss One of the unique characteristic of CECT images is the presence of fine-scale
features. These features cannot be captured simply by training WGAN model using standard
adversarial loss because the adversarial loss of a WGAN only encourages the model to minimize
the Wasserstein distance between the training data density and the learned data density. Since this
fine-scale structure is often times crucial in making important diagnostic decisions, it is desirable to
have a model which can learn these features as well.

In this work we propose a novel style-based loss in addition to standard adversarial loss for learning
the true prior density. Similar to previous works on deep style transfer and texture synthesis [?
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Figure 1: Left and right panel corresponds to two different patients. Row 1: True phase images with
missing Phase 1. Row 2: MAP estimate with vanilla GAN (MAP-WGAN), true image (True) and
MAP and standard deviation estimates for a GAN with Style loss (MAP: WGAN + Style and SD:
WGAN + Style ). Row 3: True phase images with missing Phase 2. Row 4: same as Row 2.

10, 11] we propose to use Gramm matrix based style loss. However, unlike any of the previous
work we do not rely on the pre-trained classification network (VGG-16) to build the Gramm matrix.
Instead we rely on the features extracted from certain layers of the discriminator to build the Gramm
matrix. In other words, discriminator serves the dual purpose of a critic for real versus fake image
classification and a feature extractor for style transfer. Specifically, we define the Gramm matrix
as Gij l =

∑
k Fik

lFjk
l, where Fik

l is the activation of ith filter in layer l of the discriminator at
location j. We then define the style loss by minimizing the Gramm matrices of a batch of real and
fake samples. Specifically, Lstyle =

∑b
n=1 ||Gij

l(real)− Gij l(fake)||2. In our study we use first 3
layers to compute style loss. The total loss is now given as L = Lstyle + Ladv. Further, in order to
introduce very fine-scale speckle pattern seen in the training data, we adapt the recent ideas from the
state-of-the-art StyleGAN architectures [12] and inject a fixed amount of random noise in the final
layer of the generator.

3 Results

This IRB-approved retrospective study included patients with renal lesions who had preoperative
multiphase contrast enhanced CT. All scans were obtained on the same scanner (Brilliance 64,
Philips Healthcare) during patient breath-holding with the following parameters: 120 kVp, variable
tube current, slice thickness of 0.5 mm with reconstruction interval of 2 mm. An unenhanced CT
scan of the of the abdomen was obtained first, followed by three contrast-enhanced scans in the
corticomedullary (30 seconds), nephrographic (90 seconds), and excretory (5–7 minutes) phases.
Approximately 100–150 mL of nonionic water-soluble IV iodinated contrast medium (iopamidol,
Isovue 350, Bracco Imaging) dosed to weight was administered with a power injector at a rate
of 5 mL/s. Tumor segmentation and phase co-registration Using Synapse 3D software (FujiFilm,
Stamford CT), an experienced radiologist manually segmented the renal tumors as 3D ROIs. The
nephrographic phase was used as the reference template for subsequent co-registering in other phases.
Two-dimensional images of all tumors capturing the largest tumor diameters in each phase in the
axial projection were selected and used as inputs to the WGAN model.

The GAN was trained using 375 unique CECT sequences (each with 4 phase images) which were
augmented by a factor of 8 by translation and rotation resulting in 3,000 training sequences. Two
different GAN models were considered: (a) WGAN model trained only using adversarial loss, and (b)
WGAN model trained using adversarial and style loss. Once the GAN prior was learned, the posterior
sampling was performed using Hamiltonian Monte Carlo (HMC). Figure 1 shows the representative
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results for two patients from the test set for both GAN models. In each case we pretend that one
phase (Phase 1 and then Phase 2) are missing and use the HMC sampler and the GAN models to
recover them, and the compare the results with the true phase image. We observe that both GAN
models are able to recover the overall shape and intensity of the missing phase. However, the GAN
with the style loss is able to capture these fine-scale features in addition to the overall shape and
average intensity. Furthermore, we also show the uncertainty in the recovered phase image for each
case in the form of estimated standard deviation and we observe that it is highest at the boundary of
the lesion. It is also large in regions where the intesity of the recovered image is large.

4 Conclusions

We present a novel probabilistic strategy for recovering missing phase images in CECT imaging of
renal tumors. This strategy relies on a WGAN with a novel style loss to learn the prior distribution
from a collection of complete CECT image sequences, and then implements a Bayesian update to
recover the missing phase conditioned on the knowledge of the phases that are known. We present
initial results on patient data where we recover the missing image and the pixel-wise uncertainty. We
note that this idea can be extended to other applications in medical imaging as well.

Broader impact statement

The work proposed in this manuscript aims at tackling the problem of recovery of missing phase
images in contrast-enhanced CT imaging with quantified uncertainty estimates. This work could
have a significant impact on diagnosis of renal cancer and planning of surgery, as it provides medical
decision-makers the missing data in the medical images. It also estimates the error in this data
allowing them to make more informed decisions, resulting in better patient care and improvement
of public health at large. The proposed algorithm could also be extended to many different medical
imaging modalities such as MRI, X-ray, and ultrasound.
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