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Contrast-enhanced Computed Tomography

* Most effective and preferred imaging technique for detection and diagnosis of
renal cancer.

* Intravenous contrast agent is injected into the subject and then CT images are
taken during four distinct time points - resulting in four images:

pre-contrast corticomedullary nephrographic excretory

e Pattern of enhancement is an important indicator of malignancy of tumor.



Practical challenges with CECT

* Access to all four images crucial for diagnosis and treatment planning.

* Missing data
o change in imaging equipment and/or related protocols.
o deteriorating patient health
o data management and logistic issues

* Corrupt data
o low resolution imaging
o inaccurate imaging technique
O image-post processing

Goal: Recover missing or corrupt image(s) in a CECT sequence and also
guantify corresponding uncertainty.



lmage recovery

 Complex and High
dimensional data

* Presence of fine-
scale feature




Probabilistic image imputation

Key idea: Use the distribution learned by GAN as a prior in Bayesian inference
and reformulate the posterior inference problem in the low-dimensional latent
space of the GAN.
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Step 1: Train a GAN using aset S
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Probabilistic image imputation
Step 2: Given a CECT sequence with missing/corrupt image(s), y T‘.

compute the required statistics w.r.t. posterior pP25t(x|9).

» From the weak convergence of GAN!...
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Probe the posterior (using MCMC) to get desired quantity of interest.

1: Patel et al. (2020): GAN-based priors for quantifying uncertainty.



Learning CECT specific fine-scale features

Adversarial loss alone will not ensure capturing fine-scale features unique to
CECT imaging.
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where, G'(x) = FT(x;0)F(x;0)

Discriminator performs the dual role of classifier and feature extractor.



Results on patient data
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Summary

* Algorithm for recovering missing images in CECT sequence with quantified
uncertainty estimates;

* Discriminator-driven style loss helps capture fine-scale structure;

* The proposed GAN prior framework can flexibly be extended to variety of
medical imaging applications.
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